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Abstract
Objective  Diagnostic tests, such as Immunoscore, 
predict prognosis in patients with colon cancer. However, 
additional prognostic markers could be detected on 
pathological slides using artificial intelligence tools.
Design  We have developed a software to detect colon 
tumour, healthy mucosa, stroma and immune cells on 
CD3 and CD8 stained slides. The lymphocyte density 
and surface area were quantified automatically in the 
tumour core (TC) and invasive margin (IM). Using a 
LASSO algorithm, DGMate (DiGital tuMor pArameTErs), 
we detected digital parameters within the tumour cells 
related to patient outcomes.
Results  Within the dataset of 1018 patients, we 
observed that a poorer relapse-free survival (RFS) was 
associated with high IM stromal area (HR 5.65; 95% CI 
2.34 to 13.67; p<0.0001) and high DGMate (HR 2.72; 
95% CI 1.92 to 3.85; p<0.001). Higher CD3+ TC, 
CD3+ IM and CD8+ TC densities were significantly 
associated with a longer RFS. Analysis of variance 
showed that CD3+ TC yielded a similar prognostic value 
to the classical CD3/CD8 Immunoscore (p=0.44). A 
combination of the IM stromal area, DGMate and CD3, 
designated ’DGMuneS’, outperformed Immunoscore 
when used in estimating patients’ prognosis (C-
index=0.601 vs 0.578, p=0.04) and was independently 
associated with patient outcomes following Cox 
multivariate analysis. A predictive nomogram based on 
DGMuneS and clinical variables identified a group of 
patients with less than 10% relapse risk and another 
group with a 50% relapse risk.
Conclusion  These findings suggest that artificial 
intelligence can potentially improve patient care by 
assisting pathologists in better defining stage III colon 
cancer patients’ prognosis.

Introduction
Management of metastatic colon cancer (CC) has 
evolved considerably in recent years due to the 
availability of new anatomy, molecular biology or 
immunology data.1 However, in localised tumours, 
adjuvant therapy only depends on the pathological 

Significance of this study

What is already known on this subject?
►► CD3 and CD8 infiltrates are associated with 
prognostics for localised colorectal cancer.

►► Immune infiltrate quantification outperforms 
tumour intrinsic prognostic variables.

►► A standardised method called Immunoscore 
could be used to study these immune infiltrates 
using a centralised industrial platform.

What are the new findings?
►► Based on pathological slides obtained from a 
large prospective study, we generated a new 
artificial intelligence software for studying 
both tumour intrinsic prognostic variables and 
CD3 and CD8 immune infiltrates in stage III 
colorectal cancer using an automatic procedure.

►► We observed that CD8 does not provide added 
prognostic value in comparison to CD3 analysis 
alone; therefore, a single CD3 slide is sufficient 
for determining patient prognosis.

►► The density of tumour stroma and tumour cell 
intrinsic variables are prognostic.

►► Determining the density of tumour stroma 
and tumour cell intrinsic variables combined 
with CD3 could outperform the CD3/CD8 
Immunoscore-like scoring in tumour prognosis.

How might it impact on clinical practice in the 
foreseeable future?

►► Our findings show that both tumour stroma and 
tumour cell intrinsic variables, in association 
with immune cell infiltrates, should be taken 
into account during colorectal cancer prognosis.

►► Here, we provide a novel, freely available and 
improved alternative to colorectal cancer 
prognosis using a single standard CD3 
pathological slide.

►► Validation by other studies involving stage II 
patients or patients treated with 5-fluorouracil 
alone are warranted to extend the clinical 
importance of this observation.
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stage defined according to the tumour, node and metastases 
(TNM) classification.2 This classification has some limits since 
prognosis can significantly vary among patients in the same 
stage. Indeed, in stage III patients, 5-year relapse-free survival 
(RFS) ranges from 44% to 83%.3

The in situ immune environment has also become important 
for determining patient prognosis and it appears that in 
most solid tumours, a high T-cell infiltration is associated 
with a decreased risk of tumour dissemination and improved 
survival. This correlation is well documented in CC, but also 
in melanoma, ovarian, breast, prostate and lung cancers.4 5 In 
CC, Jérôme Galon et al proposed the Immunoscore concept, 
which studies CD3 and CD8 tumour infiltration in the tumour 
core (TC) and invasive margin (IM). Immunoscore allows 
more precise definition of patient prognosis than the TNM 
stage.6 This infiltrate is associated with a lower risk of tumour 
dissemination and improved survival in CC.7 Recently, an 
Immunoscore analysis, using a centralised method in a large 
multicentric prospective study including patients with stage I–
III CC was able to distinguish three categories of patients with 
high, intermediate and low immunoscores and 8%, 19% and 
32% recurrence within 5 years, respectively.8 In addition to 
the Immunoscore analysis, many studies have underlined the 
prognostic role of tumour infiltrate lymphocytes in colorectal 
cancer (CRC).9–15 However, Luigi Laghi et al demonstrated 
that CD3 infiltrates are only prognostic in stage II tumours.16 17 
Concerning stage III CRC, contrasting data are available in the 
literature. While Laghi et al showed that CD3 infiltrates cannot 
be independently used to predict patient clinical outcomes,17 
Sinicrope and Pagès, in two different clinical trials addressing 
FOLFOX-based adjuvant chemotherapy, demonstrated that 
CD3+ densities can independently predict patient outcomes in 
stage III CC.18 19

Additionally, non-immune factors are associated with outcomes 
in localised CC. For example, tumour localisation is known to 
have a prognostic impact, since patients with right CC have a 
poorer prognosis in metastatic settings.20–22 Tumour molecular 
characteristics, such as RAS status, mismatch repair status and 
consensus molecular subtypes, could also be used to determine 
prognosis.23–25 Further, artificial intelligence (AI) could be used 
to analyse virtual microscopic images and determine, with good 
accuracy, prognostic and tumour molecular characteristics.26

Here, we hypothesised that an AI software could be devel-
oped to analyse, in a single procedure on a tumour slide, both 
immune infiltration and tumour-related prognostic parameters. 
We further hypothesised that analyses of tumour-related vari-
ables generated by AI or combination of tumour-related and 
immune variables could outperform Immunoscore analyses.

Methods
Patients
Studied patients belonged to the PETACC8 cohort,27 an European 
phase III trial which studied in stage III CC adjuvant treatment 
with 12 cycles of FOLFOX-4 or a combination of cetuximab and 
FOLFOX-4. All 2559 patients were originally included between 
22 December 2005 and 5 November 2009. Microsatellite stable 
(MSS) status, K-RAS, N-RAS and BRAF mutational statuses were 
determined as previously described.25 28 Enrolled patients had 
signed an informed consent for translational research. Only 
1018 patients of PETACC08 were included in this study, due 
to slide unavailability from the local pathologist or the absence 
of written informed consent for ancillary studies. Patients with 
slides without tumours were also excluded from the study.

CD3 and CD8 staining
CD3 staining of the PETACC08 samples was carried out in Pr. 
Emile’s lab. Slides were stained as previously described,29 using 
Bond-Max Fr4.0 (Leica Biosystem) with CD3 primary anti-
bodies (clone F7.2.38, Agilent). For CD8 staining, formalin-
fixed paraffin-embedded slides were obtained from Fédération 
Francophone de Cancérologie Digestive. Slides were stained 
using anti-CD8 primary antibody (clone (C8/144B), Agilent) 
and a Bond III apparatus (Leica Biosystem). Once counterstained 
and permanently mounted, slides were digitised with a Nanozo-
omer HT2.0 (Hammamatsu) at ×20 magnification to generate a 
whole slide imaging (WSI) file in ndpi format.

Generation of AI software
​Tissue library generation step
All WSI files were automatically segmented by script with the 
QuPath software30 using a super pixel strategy. This method tiled 
the tissue into thousands of parts. Then, 127 parameters (colour, 
saturation, brightness, texture, etc) were automatically calcu-
lated and extracted from each tile. The coordinates of each tile 
were exported to determine localisation subsequently.

Next, two pathologists hand-annotated the WSIs into different 
classes, that is, healthy (mucosa), tumour, stroma, immune cells, 
necrosis and empty space. By definition, tumour stroma consists 
of the basement membrane, fibroblasts, extracellular matrix, 
immune cells and vasculature,31 but we requested that the pathol-
ogists exclude immune cells and designated the zone as ‘stromal 
area’. Pathologists were also asked to select stromal areas rich in 
lymphocytes, which we designated as ‘immune areas’. Necrotic 
tissue and tiles without tissue were grouped as ‘other’ for further 
analysis. This work was performed on 80 slides of different 
histological types. Discrepancies observed between the pathol-
ogists were reassessed by both pathologists in a joint meeting.

​Classification model set-up step
From this training tissue library, we built a random forest32 
classification model. For histology differentiation, we selected 
the variables that most discriminated the different tissue classes 
described above using the VSURF algorithm.33 A training model 
was then built for each histology differentiation group using the 
variables selected. For patients with unknown histological differ-
entiation, we used meta training, regrouping all the training 
data available. The model used to classify WSI tiles was selected 
based on the data available from histology differentiation in the 
PETACC8 database. This model was called ColoClass.

​TC and invasion margin estimation
The TC was obtained by merging adjacent tiles that were clas-
sified as tumour cells by the classification model. Once TC was 
estimated by tumour tiles’ clustering, a 300 µm extra-boundary 
was automatically plotted. The area between this extra-boundary 
and TC is the IM, selected as tissue distance >500 µm from 
the tumour border in previous studies.34 35 We tested different 
IM distances (200, 300, 400 and 500 µm) for CD3 and found 
that 300, 400 and 500 µm yielded similar results with strongly 
correlated variables and similar prognostic value, then we 
decided to select sample sets with 300 µm IM to reduce the dura-
tion for calculation.

​CD3 and CD8 detection step
After measuring and exporting data from all WSI tiles, a script 
was run to detect any cell on WSI and export the coordinates. 
Thus, using QuPath detection scripting, positive cells for each 
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Figure 1  Tissue classification methodology and immune cell quantification. (A) Slides are segmented in thousands tiles using QuPath. Each tile 
is then classified with ColoClass R software. CD3 or CD8 staining is simultaneously evaluated with QuPath. All information are gathered to predict 
colon cancer relapse. (B) Representative pictures of a tiled slide at low magnification (left panel, scale bar 1 mm) and at high magnification (right 
panel, scale bar 250 µm). (C) Representative pictures of tissue classification from native slide (left panel) to ColoClass (right panel). Healthy mucosa 
is displayed in yellow, tumour in red, stroma in blue and immune cells in purple. The dotted line represents ColoClass IM estimation (scale bar 1 mm). 
(D) Validation of ColoClass versus pathologists. (E) Detection of positive cells on native slide (left panel) and using QuPath (right panel). Positive cells 
are displayed in green and negative cells in red (scale bar 100 µm). Hthy, healthy mucosa; IC, immune cells; IM, invasivemargin; Other, gathers white 
spaces and necrosis; Stro, stroma; WS, whole slide.

marker (ie, CD3 or CD8) were differentiated from negative 
ones. By gathering cell and tile coordinates, we were able to 
determine the accurate position of each cell and the class to 
which it belonged (ie, healthy, tumour, immune or stroma). The 
replicability of the method was tested by scanning several CD3 
slides thrice, thus generating several .ndpi files. An independent 
bioinformatician then processed each file within our QuPath 
and R scripts, and checked DGMunes (DGMate (DiGital tuMor 
pArameTErs) associated with immune and stroma informa-
tion) and subsequent scores. DGMuneS variance was ~5%. 
The concordance between semiquantitative evaluation of CD3 

by two pathologists (~90% and 89%) was determined and the 
QuPath detection scripting was performed.

​Classification model validation step
To validate our classification model, we randomly selected 53 
slides which did not belong to the training dataset. These slides 
were identically processed (ie, segmentation, digital parameters 
measurement, coordinate extraction). Two pathologists were 
asked to classify some tiles on WSI using QuPath and discrepan-
cies between them were reassessed by both pathologists in a joint 
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Figure 2  Predictive value of interest areas and digital features. (A) 
Forest plot representing the predictive value of stroma area (IM, TC 
and WSI), immune area (IM, TC and WSI), total tumour area and total 
healthy area on RFS. (B) Kaplan-Meier survival curve on discovery 
dataset (n=713) using DGMate split at median. (C) Kaplan-Meier 
survival curve on validation dataset (n=305) using DGMate split at 
median. IM, invasive margin; RFS, relapse-free survival; TC, tumour core; 
WSI, whole slide imaging.

meeting. The annotated tiles were then exported and processed 
in ColoClass.

All data, the R code and Groovy script for QuPath are avail-
able on GitHub (https://​github.​com/​Klopfe/​PETACC8). A tuto-
rial is supplied as online supplementary file.

Statistical analysis
​Survival analysis
The prognostic value of the different variables was tested through 
Cox proportional hazard models for RFS, which was defined as 
time to the first relapse or death from any cause. Survival prob-
abilities were estimated using the Kaplan-Meier method, and 
survival curves were evaluated using the log-rank test. Patients 
with RFS periods longer than 5 years were censored.

​DGMate score construction
QuPath30 was used to measure 127 parameters in each software 
segmented tile. We had computed the mean of each tumour 
tile parameter for each slide, yielding 127 parameters per slide. 
Then a LASSO36 algorithm was performed to select the variables 
that were related to the RFS using the glmnet R package.37 38 
The DGMate score is the linear predictor of the Cox model built 
on the discovery cohort with selected variables via the LASSO 
procedure.

​Discovery and validation cohorts
To validate the DGMate score as a prognostic variable, we split 
the cohort in two different groups by random sampling, placing 
70% of the patients in the discovery cohort and 30% in the vali-
dation cohort. Both groups were comparable for each clinical 
variable.

​Replication of Immunoscore
Immunoscore-like scores were generated as Immunoscore and 
assessed as previously described.8 We computed the percentiles 
for CD3 IM, CD3 TC, CD8 IM and CD8 TC variables, from 
which the average percentile of the four variables was calculated 
for each patient. A three-category Immunoscore system was 
designed, and patients with scores ranging from 0 to 0.25, 0.25 
to 0.7 and >0.7 were classed as having low, intermediate and 
high Immunoscores, respectively. A two-category Immunoscore 
system was also designed, and patients with scores ranging from 
0 to 0.25 and >0.25 were classed as having low and high Immu-
noscores, respectively.

​Predictive accuracy of Cox models
To evaluate the predictive accuracy of different models and to 
be able to compare their performance, we used 1000 bootstrap 
resampling and computed the predictive accuracy (AUC) for 
each bootstrap sampling. Model performances were compared 
using likelihood ratio tests, when the models were nested.

​Nomogram construction
We used a nomogram representation of the multivariate Cox 
models combining the DGMuneS score, N stage, T stage, differ-
entiation and RAS status to build a score. This score was then 
used to classify patients into three different categories. The score 
cut-offs were as follows: 20% of patients with the highest scores 
were classified as ‘high’, 20% with the lowest score as ‘low’ and 
the rest as ‘intermediate’. This choice was driven by our decision 
to establish an intermediate group with a survival pattern similar 
to the global population.

Software and available data
R v3.3.3 was used for statistical analysis. Figures were performed 
using GraphPad 7.03.

Results
Generation of an AI software to classify tissue structure in a 
CC pathological slide
In a haematoxylin CC tumour slide, six tissue structures were 
detected by a pathologist: the TC, the immune and the stromal 
tissues, necrotic areas, normal colon mucosae and areas without 
tissue. The IM was arbitrarily defined as an area 300 µm distant 
from the TC. Using the open source QuPath software, we 
performed tissue segmentation based on megapixel strategy, 
which regrouped pixels (called tiles) based on their similarity 
(figure  1A, methodological workflow and figure  1B), using 
a training set of 80 slides from different histological types. In 
total, 27 466 tiles were used to set up this tissue library. From 
this training tissue library, we built a random forest classifica-
tion model (figure 1C) called ColoClass. To validate our clas-
sification model, we randomly selected 54 additional slides, 
which were classified by two pathologists. Annotated tiles were 
then exported and processed in ColoClass. In total, 26 659 
tiles were processed and ~85% concordance (22 652 tiles) was 
found between the pathologist and ColoClass classifications 
(figure 1D). For a comparable dataset, the concordance between 
both pathologists was 87%. Similar results were observed inde-
pendent of the histological differentiation type (online supple-
mentary table S1). Positive T-cell (CD3 or CD8) detection was 
performed with QuPath and automatically attributed to the clas-
sified area. Pooling these information, the software is able to 
automatically determine the area corresponding to a particular 
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Figure 3  Prognostic value of immune T-cell analysis. (A) Forest plot representing the predictive value of CD3 and CD8 in IM and TC on RFS. (B) 
Kaplan-Meier RFS curved using CD3+ IM split at median. (C) Kaplan-Meier RFS curved using TC CD3 split at median. (D) Kaplan-Meier RFS curve 
using Immunoscore split at three risk groups (low 20%, intermediate 60% and high 20%). (E) Immunoscore predictive accuracy compared with CD3+ 
IM, CD3+ TC, CD8+ IM, CD8+ TC alone using a 1000× bootstrap strategy. AUC, area under the receiver operating characteristic curve; IM, invasive 
margin; ISlike, Immunoscore like; RFS, relapse-free survival; TC, tumour core; TC CD3, CD3 tumour-infiltrating lymphocytes present in the TC.

tissue on each slide, as well as the CD3 and CD8 cell infiltration 
in each tissue (figure 1E).

Prognostic role of tissue analysis
We tested the prognostic role of each variable on RFS in the 
PETACC8 cohort, including 1220 patients (flow chart, online 
supplementary figure 1). Some patients (n=202; 16.5%) 
were excluded after quality control, mostly due to the lack 
of tumour detection on the slide. Patient characteristics are 
presented in online supplementary table S2. We tested the rela-
tionship between each area determined by the software, used 
as a continuous variable, and RFS (figure  2A). High stromal 
and immune areas were, respectively, associated with poor and 
good outcomes. Data were also represented using Kaplan-Meier 
curves, and groups were separated using the median as the cut-
off (online supplementary figure 2). Healthy and tumour areas 

were not associated with RFS. The stromal area was weakly 
anticorrelated with the immune area or CD3-TC (r=0.4015 or 
0.3676, respectively; p<0.001). Stromal areas in IM and TC 
were strongly correlated (online supplementary figure 3). For 
further analysis, we decided to focus only on the stromal area 
in IM, due to a higher difference in HR and a more significant 
p-value overall. Similarly, immune areas were strongly correlated 
with CD3 infiltrate (online supplementary figure 3). Stromal 
area increased with T stage, but remained unaffected by N stage, 
sidedness, deficient mismatch repair (dMMR) status and RAS 
status (online supplementary table S3). The software analysed 
127 parameters per tile, and we used a LASSO algorithm to 
select variables associated with outcomes, thereby deriving the 
DGMate score. In a training set of 713 patients, we selected 
eight variables (online supplementary table S4) which were asso-
ciated with outcomes using the LASSO procedure (HR=2.718; 
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Figure 4  Composite variables improve prognosis prediction. (A) Kaplan-Meier relapse-free survival curve on discovery dataset (n=713) using 
DGMuneS split at third quartile. (B) Kaplan-Meier relapse-free survival curve on validation dataset (n=305) using DGMuneS split at third quartile. (C) 
Kaplan-Meier relapse-free survival curve on low-risk clinical stage (T1–3, (N1) (n=549) and high-risk clinical stage (T4 or N2) patients (n=469), both 
split at median, using DGMuneS. (D) Kaplan-Meier relapse-free survival curve on low-risk clinical stage (T1–3, (N1) (n=549) and high-risk clinical 
stage (T4 or N2) (n=469), using dichotomic ISlike score. (E) Predictive accuracy on patients’ relapse depending on clinical parameters (blue shading), 
staining parameters (green shading) or combined parameters (red shading) based on 1018 patients from PETACC08 study using a 1000× bootstrap 
strategy. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. AUC, area under the receiver operating characteristic curve; IM, invasive margin; ISlike, 
Immunoscore like; MMR, mismatch repair; N stage, node stage; T stage, tumour stage; TC, tumour core; TC CD3, CD3 tumour-infiltrating lymphocytes 
present in the TC.

95% CI 1.853 to 3.988; p=3.1e-07 for continuous variable). 
We confirmed the prognostic role of this tumour signature in the 
validation dataset n=305 (HR=2.128; 95% CI 1.162 to 3.898); 
p=0.01 for continuous variable) (figure  2B,C). The DGMate 
score increased with T and N stage, sidedness, RAS status and 
dMMR status (online supplementary table S5).

Prognostic role of immune T-cell infiltration analysis
Based on the Immunoscore rationale, we evaluated CD3+ and 
CD8+ cells in both IM and TC, and studied CD3 and CD8 

infiltration as a function of classical prognostic variables (online 
supplementary table S6). A higher T stage was associated with 
less CD3 infiltration, in both IM and TC. Similarly, a lower CD3 
infiltration was observed in IM in N2 stage patients. Higher 
infiltration of CD3 and CD8 in IM and TC was observed in 
right-sided tumours. Higher infiltration of CD3 and CD8 in 
the TC, but not in IM, was observed with dMMR tumours; 
in contrast, RAS/BRAF mutated status did not impact immune 
infiltrates. We tested the correlation between the four immune 
variables (CD3+ IM, CD3+ TC, CD8+ IM, CD8+ TC) and 
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Table 1  Cox multivariate analysis of the relationship between clinical 
and image variables and RFS

Multivariate Cox models

Discovery cohort (n=713)

HR 95% CI P value

Histopathology grading

 � Poorly/undifferentiated 1

 � Well/moderately 0.811 0.585 to 1.125 0.21

 � Unknown

T

 � T3 1

 � T1/T2 0.516 0.240 to 1.111 0.09

 � T4 1.696 1.255 to 2.292 0.0006

N

 � N1 1

 � N2 2.181 1.655 to 2.875 3.10E-08

KRAS

 � Mutated 1

 � Wild type 0.644 0.488 to 0.848 0.002

DGMuneS 1.989 1.373 to 2.881 0.0003

C-index 0.69

AIC 2567.345

AIC, akaike information criterion; KRAS, kirsten rat sarcoma viral oncogene 
homolog; RFS, relapse-free survival.

observed a strong correlation between each variable (p<0.0001 
with an R from 0.42 to 0.81) (online supplementary figure S3). 
Using the four immune variables as continuous variables, we 
tested their prognostic role in RFS (figure 3A). Using the median 
as the cut-off, high CD3+ IM, CD3+ TC and CD8+ TC were 
significantly associated with a better outcome, while CD8+ IM 
was close to significance (figure 3B,C and online supplementary 
figure S4). By combining these four variables in an ‘Immunoscore 
like’ (ISlike) manner as described by Pagès et al,8 we observed a 
better prognosis for high ISlike patients (figure 3D). The ability 
of ISlike to predict RFS was compared with CD3+ IM, CD3+ 
TC, CD8+ IM or CD8+ TC used alone by testing the predic-
tive accuracy for RFS, based on the time dependent area under 
the receiver operating characteristic curve (AUC) with 1000× 
bootstrap. ISlike did not significantly outperformed the TC-CD3 
unique variable (likelihood ratio p=0.15) (figure  3E). Hence, 
for further analysis, we decided to use only CD3 in TC to assess 
immune variables, since this variable was more significantly asso-
ciated with RFS.

Composite variable, including immune infiltrate, stromal area 
and DGMate, improved patient prognosis estimation
CD3+ TC, stromal area in IM and DGMate were weakly 
correlated (online supplementary figure S5). By combining 
CD3+ TC, stromal area in IM and DGMate, based on the 
discovery set, we generated a DGMuneS score, which was 
strongly associated with RFS in the discovery dataset and similar 
results were observed in the validation dataset (figure 4A,B). A 
multivariate Cox analysis for RFS, including all available clinical 
parameters and the DGMuneS composite score, revealed that 
the composite score remained independently associated with the 
outcome in both training and validation cohorts (table 1, online 
supplementary tables S2 and S7). Similar prognostic results were 
observed in both FOLFOX and FOLFOX–cetuximab groups 
(online supplementary figure S6). Subgroup analysis showed 
that the DGMuneS variable is significantly associated with 

prognosis in either T3N1 or T3N2 tumour stage groups (online 
supplementary table S8) and could significantly identify a group 
of patients with very good or poor outcomes within clinically 
low-risk (T1-3, N1) or high-risk (T4 or N2) groups, respectively 
(figure 4C). Contrastingly, the ISlike dichotomous variable was 
unable to significantly discriminate prognostic groups among 
high-risk clinical stage (T4 or N2) patients (figure  4D). No 
significant interaction was found between the digital and classical 
clinical prognosis variables with the exception of an interaction 
between DGMate and the histological grade (p=0.01). Using 
logistic regression, we tested the capacity of digital variables to 
predict classical prognostic variables, such as T stage, N stage, 
differentiation status and RAS/BRAF mutation. No variable was 
able to predict the differentiation status. Only DGMate could 
significantly predict the N stage and RAS/BRAF mutation status. 
All variables, TC-CD3, DGMate and stromal area, could be used 
to predict T stage (online supplementary table S9). The predictive 
accuracy of the DGMuneS score was evaluated by determining 
the time-dependent AUC; was found to be superior to tumour 
grade, RAS status, MSI status, sidedness or Immunoscore; and 
had a similar time-dependent AUC values as T stage and N stage. 
Furthermore, adding DGMuneS score to a model that combined 
all clinical variables (sex, side, MMR status, differentiation, T 
stage, N stage) significantly improved RFS prediction (likelihood 
ratio p=0.0007; figure 4E). Both tumour-related (stromal area 
and DGMate) and CD3 immune variables in TC are required to 
optimise the determination of patient prognosis (likelihood ratio 
p=0.04; figure 4E).

To address patient prognoses, we generated a nomogram 
tool based on variables retained in the multivariate model (ie, 
DGMuneS, T stage, N stage, tumour differentiation and RAS 
status). The prognostic score was based on the total number of 
points obtained on the nomogram (figure  5A). Patients were 
categorised into three risk groups, representing 20% lower, 60% 
intermediate and 20% higher scores. This separation was arbi-
trarily selected in such a way that the intermediate group had a 
similar RFS pattern to the entire cohort. A 5-year risk of relapse 
was 12% in the lower group (high vs low; HR 0.167; 95% CI 
0.099 to 0.284; p=5e-13), 28% in the intermediate group (high 
vs intermediate; HR 0.428; 95% CI 0.319 to 0.573; p=5.6e-09) 
and 52% in the higher group (figure 5B). Using the same cut-off 
limits than in the training set, we identified the same risk groups 
in the validation dataset, with RFS represented by Kaplan-Meier 
curves (all p<0.001) (figure 5C).

Discussion
Optimisation of adjuvant strategies for localised CC remains 
an important issue. On recent international guidelines based on 
the IDEA study,39 it is suggested that patients with low-risk clin-
ical stage CC only require 3 months of FOLFOX or XELOX 
regimen, while 6 months of oxaliplatin-based chemotherapy is 
recommended for high-risk clinical stage patients. With such 
treatment, 3-year RFS of 82% and 62% are attained for low-
risk and high-risk clinical stage patients, respectively. Additional 
prognostic markers are necessary to better determine patient 
prognosis. Recent data in stage III CC patients show that BRAF 
or RAS mutations are independently associated with a shorter 
time to recurrence and overall survival in patients with MSS, 
but not with MSI status.24 Moreover, immune infiltrate was also 
associated with tumour prognosis and Immunoscore was shown 
to predict outcomes in a large cohort of patients with stage I, II 
and III CC.8
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Figure 5  Nomogram tool based on variable retained in the multivariate model and relapse-free survival according to total score. (A) Nomogram 
representation of the multivariate model. Each parameter gives a number of points indicated on the upper line. The sum is indicated on total line and 
provides a 5-year survival probability. (B) Kaplan-Meier survival curve on discovery dataset (n=713) when nomogram score is split depending on 
relapse risk (low, light red line; high, dark red line or intermediate, red line), grey dotted line displays survival of whole discovery dataset. (C) Kaplan-
Meier survival curve on validation dataset (n=305) when nomogram score is split depending on relapse risk (low, light red line; high, dark red line or 
intermediate, red line), grey dotted line displays survival of whole validation dataset. N stage, node stage; T stage, tumour stage.

We postulated that the analysis of tissue structure, tumour 
cell characteristics and immune infiltrate could be combined 
to predict CC outcomes and could outperform Immunoscore. 
Using random forest classifiers, we generated a software which 
could characterise tumour cells, normal and stromal areas. The 
software detected IM and enumerated immune infiltrates in each 
area. We observed that such tissue analysis was interesting from 
a prognosis point of view, since a large stromal area was linked 
to a poorer prognosis. Such data were reminiscent of previous 
data obtained in stage II and III CC, which underlined a poorer 
prognosis of high intratumorous stromal tissue patients.40 Using 
a LASSO algorithm, we also isolated eight tumour cell parame-
ters associated with patient outcomes, called the DGMate score. 
Surprisingly, this parameter was not associated with RAS, MSI 
status or the tumour differentiation status, suggesting that digital 
pathology combined with machine learning isolated independent 
prognostic phenotypic features that could not be recognised by 
human analysis.

Our analysis of CD3 and CD8 variables generated an ISlike 
score with time-dependent discrimination properties (AUC 
of 0.56) similar to the recent publication on the international 
validation of Immunoscore (AUC of 0.57).8 Importantly, CD3 
and CD8 variables were strongly correlated, and the ISlike score 

and CD3 tumour-infiltrating lymphocytes (TILs) present in the 
TC (TC CD3) yielded similar AUCs. So, in stage III CC, we do 
not believe that Immunoscore provides any additional value 
to a simple TC CD3 accumulation analysis. Most TC-CD3 are 
located in stromal tissue around tumour cell islets which are 
poorly invaded in most cases. Analysis of the prognostic role 
of CD3 TILs located in stromal areas present in the TC or TILs 
present in tumour islets did not outperform global TC CD3 
analysis, so we have conserved this variable for further analyses 
(not shown). CD8 staining did not provide an added value in 
our study, although one limitation is that CD8 labelling was 
performed on older slides than used for CD3 labelling, raising 
the possibility that the staining was less efficient. Our study 
showed that a composite variable, including stromal area, CD3 
and DGMate, was highly predictive of outcomes and had supe-
rior discriminatory properties when compared with ISlike score 
or clinical variables. A limitation of this observation could be 
our use of an adapted algorithm based on Immunoscore meth-
odology. Indeed, this model provided results similar to Immu-
noscore when we compared time-dependent AUC of ISlike in 
our series and Immunoscore time-dependent AUC in the recent 
international validation of Immunoscore.8 Additional studies 
to directly compare Immunoscore and DGMuneS should be 
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performed. To confirm our score, cross-validations will be neces-
sary, and the use of different slide scanners should be addressed. 
The Immunoscore group proposed that T and N stages are 
not essential prognostic biomarkers and could be replaced by 
an immune variable. Our study demonstrates the opposite and 
clearly underlined that immune or digital variables are an added 
value, but could not replace clinical staging. Our data corroborate 
previous observations by Laghi et al which showed a dependency 
between N stage and CD3 infiltrates.17 While our Immunoscore-
like variable could not predict the prognosis in high-risk stage III 
patients, DGMuneS remained prognostic, suggesting that adding 
digital variables to an assessment of immune infiltrates improves 
tumour prognostic prediction. We have designed a nomogram to 
implement the scoring system. Currently, no prognostic model 
is available for estimating RFS in patients with stage III CC. 
Using this strategy, we have identified patients with reduced 
5-year RFS (50%) rates. Such patients might probably require 
intensive follow-up and should be included in clinical trials 
testing intensive adjuvant therapy, such as the IROCAS study 
(NCT02967289). We have also pinpointed patients with a very 
good prognosis (90% 5-year RFS). In this context, the relative 
risk/benefit of adjuvant therapy should be discussed and clinical 
trials addressing adjuvant therapy minimisation should be initi-
ated for such patients. We have provided here a nomogram and 
the required software, together with a tutorial. Using this open 
software, CD3 analysis could be performed by every pathologist.

Although this study involves a large and homogeneous cohort 
of stage III CC, our work also has limitations. The post hoc 
design of the analysis and the limited number of patients in some 
subgroups may restrict our conclusions. Training and validation 
cohorts for this work were performed by sampling the global 
trial population. Despite internal validation, external validation 
in prospective trials is warranted to validate the reproducibility 
of our software using different datasets. Similar studies should 
also be performed for stage II tumours, to test if our data can be 
validated in the context of patients who do not receive chemo-
therapy frequently.
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