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Machine learning evaluation of immune infiltrate through
digital tumour score allows prediction of survival outcome in
a pooled analysis of three international stage III colon cancer
cohorts
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Summary
Background T-cell immune infiltrates are robust prognostic variables in localised colon cancer. Evaluation of prog-
nosis using artificial intelligence is an emerging field. We evaluated whether machine learning analysis improved
prediction of patient outcome in comparison with analysis of T cell infiltrate only or in association with clinical
variables.

Methods We used data from two phase III clinical trials (Prodige-13 and PETACC08) and one retrospective Italian
cohort (HARMONY). Cohorts were split into training (N = 692), internal validation (N = 297) and external validation
(N = 672) sets. Tumour slides were stained with CD3mAb. CD3 Machine Learning (CD3ML) score was computed
using graphical parameters within the tumour tiles obtained from CD3 slides. CD3 infiltrates in tumour core and
invasive margin were automatically detected. Associations of CD3 infiltrates and CD3ML with 5-year Disease-Free
Survival (DFS) were examined using univariate and multivariable survival models by Cox regression.

Findings CD3 density both in the invasive margin and the tumour core were significantly associated with DFS in the
different sets. Similarly, CD3ML score was significantly associated with DFS in all sets. CD3 assessment did not
provide added value on top of CD3ML assessment (Likelihood Ratio Test (LRT), p = 0.13). In contrast, CD3ML
improved prediction of DFS when combined with a clinical risk stage (LRT, p = 0.001). Stratified by clinical risk score
(High or Low), patients with low CD3ML score had better DFS.
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Interpretation In all tested sets, machine learning analysis of tumour cells improved prediction of prognosis
compared to clinical parameters. Adding tumour-infiltrating lymphocytes assessment did not improve prognostic
determination.

Funding This research received no external funding.

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
T-cell immune infiltrates are robust prognostic variables in
localised colon cancer. Evaluation of prognosis using artificial
intelligence is an emerging field.

Added value of this study
In two phase III clinical trials and one retrospective cohort
that included 1661 patients with stage III colon cancer, the

CD3 machine learning score was significantly associated with
DFS and improved prediction of DFS when combined with
known clinical biomarkers as risk stage.

Implications of all the available evidence
Machine learning analysis of tumour cells improved prediction
of prognosis compared to clinical parameters.
Introduction
Colorectal carcinoma (CRC) is the second most com-
mon cancer in Europe and the most common digestive
tract cancer. In 2020 in Europe, the estimated number
of new patients with CRC was 520,000, accounting for
8% of all cancer deaths (245,000 deaths) in Europe.1

Localised tumours are cured by surgery. However, for
stage III CRC, three to six months of adjuvant chemo-
therapy with an oxaliplatin-based chemotherapy is rec-
ommended.2 Identifying the patients who are most
likely to have disease recurrence and metastasis after
surgical resection and adjuvant chemotherapy is a major
unmet need.

Microsatellite instability (MSI) accounts for around
12% of patients with stage III CRC.3 The MSI phenotype
is correlated with a high level of tumour-infiltrating
lymphocytes (TILs) and also associated with better
outcome, thus suggesting a role of TILs in predicting
prognosis. The immune contexture, which is deter-
mined by the density, composition, functional state and
organisation of the leukocyte infiltrate of the tumour,
can yield information that is relevant to cancer prog-
nosis or prediction of a treatment response because of
the capacity of tumour infiltrating immune cells to
shape cancer cell growth. Accordingly, presence of T
lymphocytes inside the tumour bed is a surrogate
marker of immunosurveillance, which controls tumour
growth. CD3 is expressed by both CD8 and CD4 T cells,
and high expression of CD3 is related to better prog-
nosis in multiple cancer types.4–6 TILs can be analysed
by haematoxylin and eosin (HE) staining, but also using
immunohistochemistry. The concept of the “Immuno-
score®”, previously proposed by Galon et al., studies
CD3 and CD8 tumour infiltration in both the tumour
core and invasive margin, and has been evaluated in
various studies to define patient prognosis.7 This type of
analysis is associated with a lower risk of tumour
dissemination and improved survival in colon carci-
noma (CC).8 Using a centralised method including pa-
tients with stage I–III CC, the Immunoscore® was
shown to be capable of distinguishing three categories
of patients, namely with high, intermediate and low
scores, with different levels of recurrence-free survival.9

This concept was further validated in analysis of patients
with stage III CRC included in the IDEA France
GERCOR-Prodige study.10

Additionally, non-immune factors are also associated
with outcomes in localised CRC. Sidedness, tumour
molecular characteristics such as RAS status, mismatch
repair status and consensus molecular subtypes, can
also be used to better determine prognosis.11–14 Artificial
Intelligence (AI) could be used to analyse virtual
microscopic images and determine, with good accuracy,
the prognostic and tumour molecular characteristics.15,16

We previously reported that machine learning analysis
of CD3 slides using tumour cell DGMate (DiGital
tumour pArameTErs) and tumour stromal characteristic
could improve determination of outcome in a phase III
clinical trial of adjuvant chemotherapy in CRC.17

The primary objective of this study was therefore to
determine the capacity of a machine learning score,
namely the CD3ML Score which extracts prognostic
features from tumour cells, and automatic TIL quanti-
fication to predict disease-free survival (DFS) in
different international cohorts of stage III CRC. The
predictive value of the digital score for DFS in com-
parison with clinical prognostic factors was also
investigated.
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Methods
Study population
Different cohorts were used in this study
(Supplementary Figure S1a and b). All these patients
underwent surgical ablation of localised CCR, without
neoadjuvant treatment.

We used the PETACC08 cohort, a European, phase
III trial that studied stage III CC adjuvant treatment
with 12 cycles of FOLFOX-4 or a combination of
cetuximab and FOLFOX-4 (NCT00265811).18 All 2559
patients were originally included between 22 December
2005 and 5 November 2009. Microsatellite stable (MSS)
status and KRAS mutational status were determined as
previously described.14,19 Enrolled patients had all pro-
vided written informed consent for translational
research. Only a total of 1152 patients from PETACC08
were included in this study, due to slide unavailability
from the local pathologist, or the absence of written
informed consent for ancillary studies, or incomplete
clinical data. Patients with slides without tumour were
also excluded from the study.

Next, we selected 398 stage III CC from the Prodige-
13 study (NCT00995202).20 This randomised, prospec-
tive, multicentre study was designed to investigate the
impact of both intensive radiological monitoring vs.
standard monitoring, and Carcinoembryonic Antigen
(CEA) monitoring vs. no monitoring, since 2009. All use
of clinical data and tissue specimens was in compliance
with the Federation Francophone de Cancérologie
Digestive (www.ffcd.fr) guidelines. Of the total 398 pa-
tients, only 322 were analysed in the present study due
to slide unavailability.

We used an Italian cohort named HARMONY,
comprising formalin-fixed, paraffin-embedded (FFPE)
tumour specimens from 400 consecutive patients with
stage III colorectal cancer between 1997 and 2006.
These patients had undergone radical surgery at the
Humanitas Clinical and Research Centre (Milan, Italy)
from 1997 to 2006. Only 187 patients were analysed due
to slide unavailability.

Comparison of clinical data from included vs
excluded patients was performed in each data set
(PETACC08, Prodige-13 and HARMONY). Only pa-
tients with stage III were included in this comparison.
We observed a significant difference in histopatholog-
ical grade for the PETACC08 cohort, because a part of
the unanalysed slides were classified as “Undifferenti-
ated”, and in tumour location for Prodige-13 and
HARMONY cohorts due to the presence of rectal cancer
in unanalysed patients (Supplementary Table S1,
Supplementary Figure S1b).

Ethics
The study was conducted according to the guidelines of
the Declaration of Helsinki and Good Clinical Practice
guidelines (ClinicalTrials.gov Identifiers: NCT00265811,
NCT00995202).
www.thelancet.com Vol 105 July, 2024
Studies were approved by Comités de protection des
personnes (CPP) Ile-de-france VI for PETACC08 and
CCP EST1 for Prodige-13.

Samples from HARMONY cohort were obtained
complying with protocols approved by the local Ethical
Committee and Institutional Review Board at Human-
itas Clinical and Research Center.

All participants provided written informed consent.
The manuscript is reported in accordance with the

STROBE, REMARK and TRIPOD recommendations.21–23

Training and validation cohorts
To develop and validate the different scores and models
as prognostic variables, we created a training cohort, an
internal validation cohort, and an external validation
cohort (Supplementary Figure S1a). PETACC08 was
divided in two sub cohorts, stained in two different
centres: PETACC08-subgroup 1 (named sub1 hereafter)
and PETACC08-subgroup 2 (sub2) (see below, CD3
Staining). PETACC08 sub1 cohort was split into two
different cohorts by random sampling, placing 70% of
the patients in the training cohort (N = 692) and 30% in
the internal validation cohort (N = 297). The external
validation cohort was composed of PETACC08 sub2,
Prodige-13 and HARMONY cohorts (N = 672)
(Supplementary Table S2).

CD3 staining
CD3 staining of 989 slides from the PETACC08 sub1
samples was carried out in the laboratory of J.F.E. Slides
were stained as previously described,24 using Bond-Max
Fr4.0 (Leica Biosystem) with CD3 primary antibodies
(clone F7.2.38, Agilent, RRID: AB_1148907). Once
counterstained and permanently mounted, slides were
digitised with a Nanozoomer HT2.0 (Hamamatsu)
at ×20 magnification to generate a whole slide imaging
(WSI) file in ndpi format.

Slide staining for the Prodige-13 cohort and 163
slides of the PETACC08 sub2, was carried out using the
Autostainer 48 (Agilent) and anti-CD3 primary antibody
(clone F7.2.38, Agilent, RRID: AB_1148907). Once
counterstained and permanently mounted, slides were
digitalised with a Nanozoomer HT2.0 (Hamamatsu)
at ×20 magnification to generate a WSI file in ndpi
format.

Slide staining for the HARMONY cohort was per-
formed using Bond-Max Fr4.0 (Leica Biosystem) with
CD3 primary antibodies (1:50, clone F7238; Dako,
RRID: AB_1148907). Once counterstained and perma-
nently mounted, slides were digitised with a Nano-
zoomer HT2.0 (Hamamatsu) at ×20 magnification to
generate a WSI file in ndpi format.

CD3 detection and models
Once digitalised, we applied our ColoClass software,
previously published in 2020.17 Briefly, the whole slide
image was tiled with QuPath software (v3) and 124
3
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graphical parameters were extracted from within each
tile.25 A random forest model was estimated to classify
any tile detected on the whole slide. Coloclass was finally
able to automatically detect Tumour Core (TC) by
collating tumour tiles when the surface was big enough,
and automatically determine its Invasive Margin (IM) by
a 300 μm surrounding border of the TC. The number of
CD3 positive cells/mm2 was then calculated in these
specific areas respectively called CD3-TC and CD3-IM.
Each score was dichotomised into two groups (Low and
High) using the median of each cohort (PETACC08
sub1 training and validation, PETACC08 sub2, Prodige-
13 and HARMONY).

CD3ML score construction
For each slide, the mean of graphical parameters on
tumour tiles in TC and IM zones was computed,
yielding 124 graphical parameters for each slide. Then a
LASSO algorithm was estimated on the PETACC08
sub1 training cohort to select variables related to DFS
using the glmnet R package.26 A CoxBoost algorithm
was also used with almost the same results (R library
CoxBoost).27

The CD3ML score is estimated as the linear predictor
of the Cox model constructed in the training cohort with
variables selected via the LASSO procedure. For each
cohort (PETACC08 sub1 training and validation,
PETACC08 sub2, Prodige-13 and HARMONY), CD3ML
score was dichotomised into two groups (Low and High)
using the best cut-off strategy based on survival infor-
mation (maxstat R library28). In this way, the cut-off was
cohort-dependent.

Statistics
Quantitative variables are described as median and
Interquartile Range (IQR), and qualitative variables as
number and percentage. Patient characteristics were
compared by cohort (training, internal validation and
external validation) or by CD3 or CD3ML status using
the Chi-2 or Fisher’s exact test for qualitative variables,
and the Wilcoxon rank sum test for continuous vari-
ables, as appropriate. Correlations between continuous
variables were quantified using Pearson’s correlation
coefficient. p-values were adjusted using Benjamini-
Hochberg FDR correction and adjusted p-values<0.05
were considered significant.

Disease-Free Survival (DFS) was computed as time
from diagnosis of localised disease to recurrence or
death and was evaluated at 60 months. Patients who
were alive with no progression at 60 months were
censored.

Survival analysis was performed using the survival R
library. The prognostic value of the different variables
was tested using univariate or multivariate Cox models
for DFS when conditions of the model validity were
applicable. Proportional hazards assumptions were
tested based on Schoenfeld residuals. When the
proportionality assumption was not verified, for multi-
variate models we fit an extended Cox model, with time
dependent coefficients for relevant variables; the time
varying coefficient was described with a parametric
time function. Survival probabilities were estimated
using the Kaplan–Meier method and survival curves
were compared using the log-rank test when appro-
priate. When the proportional hazards assumption was
not checked, the estimated restricted mean survival time
(RMST) for DFS at 60 months was assessed to compare
groups of interest (SurvRM2 R library).29 P-values less
than or equal to 0.05 were considered statistically sig-
nificant. Nested models were compared using the
Likelihood Ratio Test (LRT) and the Area Under the
Curve (AUC). AUC was estimated using different
methods depending on whether the proportional haz-
ards assumption was verified or not (respectively Sur-
vivalROC or RiskSetROC R libraries).30,31 The predictive
power of the different models were compared using
AUC with 1000 x bootstrap replications and Wilcoxon
rank sum tests.

Statistical analyses were performed using the R
software (http://www.R-project.org/) and graphs were
drawn using GraphPad Prism version 9.0.2.

Roles of funders
This research received no external funding.
Results
Patient characteristics
The study includes 1661 patients overall, obtained from
the two phase III clinical trials (PETACC08 and Prodige-
13) and the retrospective Italian cohort, HARMONY.
The PETACC08 sub1 cohort was split into a training
and internal validation set and the other cohorts were
pooled for the external validation set (Supplementary
Figure S1a). Mean patient age was 63 (IQR = [55, 69])
years with a range of 23–94 years. Three hundred and
twenty-two (19%) patients presented T4 and 562 (34%)
patients presented N2 tumour status, yielding a total of
746 (45%) patients with high risk stage 3 and 915 (55%)
patients with low risk stage 3.

Seven hundred and six (42%) patients had right-
sided tumours, 955 (58%) had left-sided. One hundred
and forty-four (9%) patients were MSI (Microsatellite
Instability)/dMMR (deficient Mismatch Repair) and 505
(45%) were KRAS mutant (information available
respectively for 1543 and 1111 patients). Patient char-
acteristics, stratified by cohort, are shown in Table 1. No
clinical difference was observed between the training
and internal validation cohort. Patients in the external
validation cohort were older than in the training or in-
ternal validation cohorts (Wilcoxon test, p < 0.001;
Supplementary Table S3).

We analysed the association between clinical vari-
ables and CD3 TC, IM and CD3ML scores. Patients
www.thelancet.com Vol 105 July, 2024
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Variables All patients
N = 1661

Training cohort
N = 692

Internal validation cohort
N = 297

External validation cohort
N = 672

p-value Adjusted p-value

Sex 0.2 0.5

Male 965 (58%) 416 (60%) 160 (54%) 389 (58%)

Female 696 (42%) 276 (40%) 137 (46%) 283 (42%)

Age 63 (55, 69) 61 (54, 67) 62 (54, 67) 65 (57, 73) <0.001 <0.001

≤60 699 (42%) 341 (49%) 135 (45%) 223 (33%) <0.001 <0.001

>60 962 (58%) 351 (51%) 162 (55%) 449 (67%)

Histopathological grade 0.007 0.033

Well/Moderately differentiated 1400 (84%) 564 (82%) 247 (83%) 589 (88%)

Poorly differentiated 261 (16%) 128 (18%) 50 (17%) 83 (12%)

T status 0.8 0.9

1–3 1339 (81%) 553 (80%) 243 (82%) 543 (81%)

4 322 (19%) 139 (20%) 54 (18%) 129 (19%)

N status 0.2 0.5

1 1099 (66%) 441 (64%) 201 (68%) 457 (68%)

2 562 (34%) 251 (36%) 96 (32%) 215 (32%)

Risk stage 0.2 0.5

Low 915 (55%) 363 (52%) 174 (59%) 378 (56%)

High 746 (45%) 329 (48%) 123 (41%) 294 (44%)

M status

0 969 (58%) 581 (84%) 256 (86%) 132 (20%)

1 2 (0.1%) 2 (0.3%) 0 (0%) 0 (0%)

x 690 (42%) 109 (15.7%) 41 (14%) 540 (80%)

MSI or MMR status >0.9 >0.9

MSS or pMMR 1399 (91%) 620 (91%) 259 (90%) 520 (91%)

MSI or dMMR 144 (9%) 63 (9%) 28 (10%) 53 (9.2%)

Unknown 118 9 10 99

Sidedness 0.4 0.7

Left 955 (58%) 410 (59%) 163 (55%) 382 (57%)

Right 706 (42%) 282 (41%) 134 (45%) 290 (43%)

Lung metastasis 83 (7.2%) 53 (7.7%) 20 (6.7%) 10 (6.1%) 0.7 0.9

Unknown 509 0 0 509

Liver metastasis 109 (9.5%) 71 (10%) 28 (9.4%) 10 (6.1%) 0.3 0.6

Unknown 509 0 0 509

Bone metastasis 8 (0.7%) 6 (0.9%) 1 (0.3%) 1 (0.6%) 0.9 >0.9

Unknown 509 0 0 509

Other metastasis 59 (5%) 35 (5.1%) 13 (4.4%) 11 (6.7%) 0.5 0.7

Unknown 509 0 0 509

KRAS 0.5 0.7

Mutated 505 (45%) 321 (46%) 134 (45%) 50 (41%)

Wild-Type 606 (55%) 371 (54%) 163 (55%) 72 (59%)

Unknown 550 0 0 550

BRAF 0.4 0.7

Mutated 122 (11%) 75 (11%) 37 (13%) 10 (8.3%)

Wild-Type 959 (89%) 598 (89%) 250 (87%) 111 (92%)

Unknown 580 19 10 551

Comparisons were performed between training, internal validation and external validation cohorts. p-values and adjusted p-values <0.05 are highlighted in bold. MSI: Microsatellite Instability; MMR:
Mismatch Repair; MSS: Microsatellite Stable; dMMR: deficient Mismatch Repair; pMMR: proficient Mismatch repair.

Table 1: Clinical characteristics of the study population (All patients, Training, Internal validation and External validation cohorts).

Articles
classified as low risk seemed to have more CD3 TC and
IM (significant only for CD3 TC in the internal valida-
tion cohort) and had significantly lower CD3ML score
(Supplementary Figure S2a). CD3 TC and IM scores
www.thelancet.com Vol 105 July, 2024
appeared to be overexpressed in patients with right-
sided tumours (Supplementary Figure S2b). The
CD3ML score was not significantly associated with
sidedness. Patients with MSI or dMMR status had
5
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significantly higher expression of CD3 TC, the same
trend was observed for CD3 IM (significant only for the
training cohort). Conversely, these patients had lower
CD3ML score in the training and internal validation
cohorts. In the external validation cohort, patients with
MSI or dMMR status seemed to have higher CD3ML
but the difference was not significant (Supplementary
Figure S2c). Moreover, CD3 TC, IM and CD3ML
scores were not associated with KRAS or BRAF muta-
tion, except in the training cohort, where patients with
BRAF mutations had higher CD3 TC score
(Supplementary Figure S2d and e).

Then, we analysed the links between CD3 TC, IM
and CD3ML scores. In the whole cohort, CD3 TC and
IM scores were significantly correlated (Supplementary
Figure S3a). CD3 TC score, and the CD3 TC and CD3
IM scores sum were significantly negatively correlated
with CD3ML score. We tested whether scores were
different in the training and validation cohorts. CD3 TC,
CD3 IM and CD3ML scores were significantly different
in the external validation cohort (Supplementary
Figure S3b, c and d).

Association of CD3 and CD3ML scores with DFS
In the training cohort, using the median as a cut off,
patients with high CD3 TC had significantly better
survival than patients with low CD3 TC (HR = 0.67
[0.51, 0.88]; log-rank test, p = 0.004). For CD3 IM, where
condition of the Cox proportional model validity was not
applicable, the estimated restricted mean survival time
for DFS was used and at 60 months of follow-up, pa-
tients with high CD3 IM (using the median as a cut-off)
seemed to have better survival than patients with low
CD3 IM (47.3 [45.3, 49.3] months versus 50 [48, 52]
months; RMST, p = 0.07). A CD3 model was con-
structed using combined CD3 TC and CD3 IM status:
patients with both high CD3 TC and high CD3 IM were
considered as CD3High and other patients (with either
low CD3 TC and/or IM) as CD3Other. Patients classified
CD3High had better DFS than other patients (HR = 0.67
[0.5, 0.89]; log-rank test, p = 0.007; Fig. 1a). Similar re-
sults were observed in the validation cohorts (internal
and external) (Fig. 1b and c).

We tested the interactions between CD3 variable and
clinical markers (Supplementary Table S4). In the
training cohort, patients classified as CD3High had more
right-sided tumours and MSI/dMMR status than pa-
tients classified CD3Other. These observations were not
significant in the validation cohorts.

In the training cohort, using the optimal cut-off
based on DFS, patients with low CD3ML score had
significantly better survival than patients with high
CD3ML score (HR = 0.55 [0.41, 0.72]; log rank test, p <
0.001; Fig. 2a). The same observations were made for
both the internal validation and external validation co-
horts (respectively, HR = 0.47 [0.3, 0.75]; log-rank test,
p = 0.001 and HR = 0.5 [0.37, 0.67]; log-rank test,
p < 0.001; Fig. 2b and c). When we divided the external
validation cohort per sub-cohort, we observed similar
significant results for Prodige-13 and PETACC08 sub2
cohorts, but results were not significant for the HAR-
MONY cohort (data not shown). In all cohorts, patients
classified CD3MLLow were also mostly classified N1 and
low risk, compared to patients classified CD3MLHigh

(Supplementary Table S5).
To go further, we pooled all cohorts and estimated a

combined model with 4 modalities using CD3ML score
and N status. In each of the 2 groups (N1 or N2), pa-
tients classified CD3MLLow had better survival than pa-
tients classified CD3MLHigh (N1: HR = 0.55 [0.43, 0.71];
log-rank test, p < 0.001; N2: HR = 0.57 [0.44, 0.75]; log-
rank test, p < 0.001; Supplementary Figure S4).

We assessed the added value of the CD3ML and CD3
models in each cohort. In the training cohort, using
time dependent area under the curve (AUC), we
observed that the CD3 model did not add significant
value on top of the CD3ML model (AUC = 0.58 for the
CD3ML model and 0.6 for the CD3ML + CD3 model;
LRT, p = 0.13; Fig. 3a). By subgroup analysis, we
observed no significant difference in DFS between
CD3High and CD3Other patients in the CD3MLLow group
(HR = 0.78 [0.54, 1.13]; log-rank test, p = 0.2) or in the
CD3MLHigh group (HR = 0.8 [0.44, 1.44]; log-rank test,
p = 0.45; Fig. 3b).

Findings were similar in both validation cohorts
(Fig. 3c and d) except in the internal validation cohort
which patients classified CD3High had significant better
DFS than patients classified CD3Low in CD3MLLow

group (HR = 0.38 [0.18, 0.82]; log-rank test, p = 0.01).
Because the CD3 variable did not add any significant
incremental value to the CD3ML variable, we pursued
with the CD3ML-only model for further analysis.

CD3ML cut off is cohort dependent and we were not
able to normalise CD3ML score. However, when slides
were processed with the same technology (same CD3
staining and same digitalisation) we observed that cut-
off could be validated across PETACC08 sub2 and
Prodige-13 studies (data not shown).

Combination of CD3ML and clinical variables
We performed Cox univariate analysis on the training
cohort including only clinical variables available for at
least 95% of all patients and for which proportional
hazards assumption was verified (except M grade as all
patients had the same modality, and T and N status as
their information was included in risk stage). Patients
with poorly differentiated tumour had lower DFS than
the others (Fig. 4a). For sex and risk stage variables,
condition of the Cox proportional model validity was not
applicable. Using RMST measure, risk stage was
significantly associated with DFS (RMST, p < 0.001).

By multivariate Cox analysis including histological
grade and risk stage using time-dependent coefficient,
only risk stage remained significant (Fig. 4a).
www.thelancet.com Vol 105 July, 2024
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Fig. 1: Association between CD3 and survival. Kaplan–Meier curves with patients stratified according to CD3 TC (blue), CD3 IM (pink) and
combined CD3 (purple) status for disease-free survival in the a) training, b) internal validation and c) external validation cohort. Hazard ratio and
log-rank test p-values were shown when proportional hazards assumption was verified, otherwise the RMST measure and p-value were pre-
sented. TC: Tumour Core; IM: Invasive Margin.
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A multivariate Cox model with risk stage and
CD3ML score was estimated for each cohort, with risk
stage estimated using time-dependent coefficient where
necessary (Supplementary Figure S5). All variables were
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significantly and independently associated with DFS in
the training and validation cohorts.

A clinical score was estimated using risk stage. Pa-
tients with low risk stage had better survival than
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Fig. 3: Combination of CD3 and CD3ML. a) Bar plots of time-dependent Area Under the Curve (AUC) for CD3, CD3ML and CD3 + CD3ML
models for disease-free survival, *** Likelihood ratio test p < 0.001, ns: non-significant. Kaplan–Meier curves with patients stratified according to
CD3 and CD3ML status for disease-free survival in the b) training, c) internal validation and d) external validation cohort. Hazard ratio and log-
rank test p-value were presented when proportional hazards assumption was verified otherwise the RMST measure and p-value were presented.
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patients with high risk stage (respectively 54.1 [52.6,
55.5] months and 42.7 [40.3, 45] months; RMST, p <
0.001; Fig. 4b). Similar results were observed in the
validation cohorts (Fig. 4c and d).

To test the capacity of the CD3ML variable to improve
the predictive power of the clinical score, we generated a
combined model. Comparison of models using the AUC
and LRT showed that both variables improved the pre-
dictive power in the training cohort (AUC = 0.59 for the
clinical model, 0.58 for the CD3ML model and 0.65 for
the Clinical + CD3ML model; LRT, p < 0.001 between
CD3ML model and Clinical + CD3ML model and LRT,
p = 0.001 between Clinical and Clinical + CD3ML
models; Fig. 5a). By subgroup analysis, CD3ML score was
significantly associated with DFS, regardless of the clin-
ical score. In both low and high clinical score groups,
patients classified CD3MLLow had better survival than
patients classified CD3MLHigh (HR = 0.59 [0.35, 0.98];
log-rank test, p = 0.04;HR = 0.64 [0.46, 0.9]; log-rank test,
p = 0.01; Fig. 5b). Similar results were observed in both
validation cohorts (Fig. 5c and d).

To go further, we pooled all cohorts and estimated a
combined model with 3 modalities (High = ClinicalHigh/
CD3MLHigh, Intermediate = ClinicalHigh/CD3MLLow or
ClinicalLow/CD3MLHigh and Low = ClinicalLow/
CD3MLLow). We observed that patients classified Low
had better DFS than patients classified Intermediate
(HR = 0.5 [0.39, 0.63]; log-rank test, p < 0.001) or High
(HR = 0.26 [0.2, 0.33]; log-rank test, p < 0.001; Fig. 5e).
Moreover, patients classified Intermediate had signifi-
cantly better DFS than patients classed as High
(HR = 0.52 [0.42, 0.63]; log-rank test, p < 0.001).

Next, we analysed the predictive power of different
variables using AUC with 1000 x bootstrap replications.
When considering the whole cohort, CD3ML had a
better AUC (median AUC = 0.58, IQR = [0.57, 0.6])
than risk stage (AUC = 0.56 [0.53, 0.6]; Wilcoxon test,
p < 0.001) and CD3 score (AUC = 0.55 [0.54, 0.56];
Wilcoxon test, p < 0.001; Supplementary Figure S6a). In
training cohort, risk stage had a better AUC than CD3
and CD3ML scores (risk stage: 0.6 [0.57, 0.62], CD3:
0.56 [0.54, 0.59] and CD3ML: 0.57 [0.56, 0.6]; Wilcoxon
test, p < 0.001, Supplementary Figure S6b). Similar re-
sults were observed in internal validation cohort (risk
stage: 0.64 [0.62, 0.67], CD3: 0.59 [0.56, 0.59] and
CD3ML: 0.59 [0.57, 0.62]; Wilcoxon test, p < 0.001;
Supplementary Figure S6c). In the external validation
cohort, similarly at the whole cohort, CD3ML score
(AUC = 0.59 [0.57, 0.61]) had better predictive capacity
than risk stage (AUC = 0.57 [0.55, 0.59]; Wilcoxon test,
p < 0.001) and CD3 score (AUC = 0.54 [0.53, 0.56];
Wilcoxon test, p < 0.001; Supplementary Figure S6d).
www.thelancet.com Vol 105 July, 2024
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Fig. 4: Clinical variables and outcome. a) Forest plots representing hazard ratios and confidence intervals for univariate (blue) and multivariate
(grey). Cox models for disease-free survival estimated using clinical variables in the training cohort. *: Log-rank test p-value ≤0.05. Risk stage
variable was estimated using time-dependent coefficient. Coefficients for tt1 (Risk stage) and tt2 (Risk stage) describe time varying effect of risk
stage evaluated between 0 and 22 months, and 22 and 60 months, respectively. Kaplan–Meier curves with patients stratified according to the
clinical model for disease-free survival in the b) training, c) internal validation and d) external validation cohort. Hazard ratio and log-rank test p-
value were shown when proportional hazards assumption was verified otherwise the RMST measure and p-value were shown.

Articles
Discussion
Various studies have demonstrated the prognostic role
of CD3 immune infiltrate for improved assessment of
patient prognosis in early stage CRC.32–36 Using a
single CD3 slide, we were able to observe, in different
datasets of patients treated for stage III CRC by sur-
gery and adjuvant chemotherapy, that machine
learning scoring of CD3 slides through our CD3ML
model could predict DFS in each cohort. This infor-
mation provides added value on top of clinical stage,
and improves DFS prediction in patients with low or
high clinical risk. Importantly, automatic counting of
CD3 slides did not provide any added value on top of
machine learning digital evaluation of CD3 slides,
thus suggesting that machine learning digital assess-
ment could be a simple way to overcome difficulties of
TIL enumeration.

Artificial intelligence is a transformative innovation
for pathology. Deep learning, a particular type of artifi-
cial intelligence, is a suitable technique to perform
automatic delineation of tumour on a whole HE slide,
www.thelancet.com Vol 105 July, 2024
and to predict the tumour type or some particular
tumour genetic mutation.37 Previous studies have
shown that deep learning could be used to develop a
new histological classification to predict outcome in
various tumour types, but also to unravel some partic-
ular morphological features related to outcome or
response to therapy.38–40 Some retrospective studies have
shown the capacity of this technique to predict survival
in patients treated for localised colorectal cancer.41–43

Interestingly, such deep learning biomarkers provide
added value on top of T and N stage to refine patient
prognosis. Deep learning, by refining risk stratification,
could improve clinical decision support for enhanced
selection of adjuvant therapies. However, the imple-
mentation of such strategies in routine clinical practice
remains challenging because of the computer time or
graphics capacity required for such analysis. The models
may also be difficult for physicians to interpret.
Furthermore, external validation would be challenging
because of the lack of reproducibility of HE staining
across pathology laboratories, or even within the same
9
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Fig. 5: Combination of clinical and CD3ML models. a) Bar plots of time-dependent Area Under the Curve (AUC) for clinical, CD3ML and
clinical + CD3ML models for disease-free survival, **p < 0.01 and ***p < 0.001. Kaplan–Meier curves with patients stratified according to clinical
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Articles

10
laboratory, notably because of variations in fixation
time.44,45

Alternative strategies to deep learning assessment of
patient prognosis rely mainly on analysis of the immune
contexture. To address this problem, the Immuno-
score®, which counts CD3 and CD8 infiltrates in the
tumour core and invasive margin, was previously pro-
posed as a valuable strategy to predict patient outcome
in early stage CRC. Results with the Immunoscore®
were validated in various data sets and yielded results
very similar to deep learning models.9,46 In a recent
analysis of the IDEA France study, the prognostic value
of the Immunoscore® was observed in patients with
CRC stage III treated with oxaliplatin-based chemo-
therapy. A greater benefit of 6 months of adjuvant
therapy was observed in patients with Immunoscore®-
high, thus suggesting that this score could be valuable to
stratify patient treatments.33 In the same context,
Saberzadeh-Ardestani et al. demonstrated that TILs
could be quantified based on HE slides, and there was
an association in their study between high TIL infiltra-
tion and better DFS.47 They further observed that the
prognostic features of TIL density were different
depending on primary tumour sidedness and clinical
risk group, suggesting that TILs should be interpreted
in this context among stage III CRC.47 To go further, we
recently reported that machine learning tumour
assessment in addition to CD3 TIL analysis could be
combined to improve prediction of patient prognosis in
a single dataset.17

Our results show that despite automatic assessment,
CD3 enumeration on a tumour slide may vary according
to the dataset. This difficulty could arise from the fact
that each cohort was stained in a different hospital using
various technological platforms. To overcome this
pitfall, the Immunoscore® requires central analysis.
Further protocols remain proprietary, which strongly
limits access to these types of analyses. To circumvent
these limitations, a multistain deep learning pipeline
was developed with the aim of predicting survival and
treatment response in patients with CRC. This strategy
demonstrated its efficacy for the prediction of relapse-
free survival (RFS), but required laborious multiple
chromogenic staining, which is expensive and not
widely applicable in clinical routine.48

In this study, we used a simplified method. CD3ML
is a score obtained from analysis of tumour core tissue
using Qupath. QuPath was used to measure 124 pa-
rameters in each software segmented tile and the
CD3ML score is the linear predictor of the Cox model
with selected variables built on the PETACC08 cohort.
The CD3ML score analyses tumour tissue structure as
well as CD3 information. The correlation between
CD3ML and CD3 scores, and the absence of any added
www.thelancet.com Vol 105 July, 2024
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value of CD3 counting on top of CD3ML demonstrates
that CD3 enumeration could be outperformed by arti-
ficial intelligence evaluation of immune infiltrate
without counting.

Based on recent studies demonstrating the value of
immune checkpoint inhibitors in MSI tumours, we
might suspect that CD3ML could be used to predict
response to immunotherapy.47 Our results confirm this
hypothesis. However, MSI tumours were treated with
chemotherapy in this study, and further work is war-
ranted to decipher whether CD3ML predicts response to
immunotherapy.

The strengths of this study include the large number
of patients coming from 2 prospective clinical trials with
mature survival and well-characterised clinical data, and
a large retrospective cohort from another country. This
strategy helps us to generate training and validation sets,
thereby strengthening our results. Limitations include
the fact that our findings were not designed to deter-
mine an optimal universal cut off for CD3ML. The use
of a LASSO algorithm and cut-off determination based
on survival information represents a data-driven
approach and may lead to overfitting. In this study, we
did not validate the cut-off but, using internal and
external validations, we were able to validate the pre-
dictive power of variables selected to compute the
CD3ML score; in fact our score remained significant for
each validation cohort. Variations in CD3ML or CD3
scores between cohorts suggest that for generalisation
and prospective study, central analysis should be per-
formed to avoid variations in the score related to tech-
nological variation in staining or digitalisation.
Furthermore, all patients received adjuvant chemo-
therapy for 6 months, such that the predictive utility of
TILs for chemotherapy outcomes could not be studied.

In conclusion, our study shows that patient tumours
with low CD3ML had the best DFS in each dataset, and
in patients with high or low risk. Prospective validation
and determination of an optimal cut off are warranted,
but these findings suggest that the CD3ML score should
be interpreted in the context of tumour site for the
purposes of estimating prognosis.
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